np.arraynp.asarray 都可将结构数据转换为 ndarray 类型
但是主要区别就是当数据源是 ndarray 时:
np.array 占用新的内存,即转换后的变量与原始变量相互独立
np.asarray 不会占用新的内存,即转换后的变量与原始变量无关

import numpy as np  
  
#example 1:  
data1=[[1,1,1],[1,1,1],[1,1,1]]  
arr2=np.array(data1)  
arr3=np.asarray(data1)  
data1[1][1]=2  
print 'data1:\n',data1  
print 'arr2:\n',arr2  
print 'arr3:\n',arr3

输出结果为:

data1:  
[[1, 1, 1], [1, 2, 1], [1, 1, 1]]  
arr2:  
[[1 1 1]  
 [1 1 1]  
 [1 1 1]]  
arr3:  
[[1 1 1]  
 [1 1 1]  
 [1 1 1]]
import numpy as np  
  
#example 2:  
arr1=np.ones((3,3))  
arr2=np.array(arr1)  
arr3=np.asarray(arr1)  
arr1[1]=2  
print 'arr1:\n',arr1  
print 'arr2:\n',arr2  
print 'arr3:\n',arr3

输出结果为

arr1:  
[[ 1.  1.  1.]  
 [ 2.  2.  2.]  
 [ 1.  1.  1.]]  
arr2:  
[[ 1.  1.  1.]  
 [ 1.  1.  1.]  
 [ 1.  1.  1.]]  
arr3:  
[[ 1.  1.  1.]  
 [ 2.  2.  2.]  
 [ 1.  1.  1.]]
更新于 阅读次数