参考链接:https://www.bilibili.com/video/BV1hE411t7RN/?spm_id_from=333.337.search-card.all.click&vd_source=e01172ea292c1c605b346101d7006c61

# 一、直接搭建

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class SelfNet(nn.Module):
    def __init__(self):
        super(SelfNet, self).__init__()
        self.conv1 = Conv2d(3, 32, 5, padding=2)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(32, 32, 5, padding=2)
        self.maxpool2 = MaxPool2d(2)
        self.conv3 = Conv2d(32, 64, 5, padding=2)
        self.maxpool3 = MaxPool2d(2)
        self.flatten = Flatten()
        self.linear1 = Linear(1024, 64)
        self.linear2 = Linear(64, 10)
    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x
selfNet = SelfNet()
print(selfNet)
input = torch.ones((64, 3, 32, 32))
output = selfNet(input)
print(output.shape)

# 二、使用直接搭建

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class SelfNet(nn.Module):
    def __init__(self):
        super(SelfNet, self).__init__()
        self.model = nn.Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )
    def forward(self, x):
        x = self.model(x)
        return x
selfNet = SelfNet()
print(selfNet)
input = torch.ones((64, 3, 32, 32))
output = selfNet(input)
print(output.shape)
更新于 阅读次数